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The relationship between macroscopic shear yield criteria and local stress distributions in deformed polymer
glasses is investigated via molecular dynamics simulations on different scales of coarse-graining. Macroscopic
shear stresses at the yield point obey a pressure-modified von Mises �pmvM� criterion for many different
loading conditions and strain rates. Average local stresses in small volume elements obey the same yield
criterion for volumes containing approx. 100 atoms or more. Qualitatively different behavior is observed on
smaller scales: the average octahedral atomic shear stress has a simple linear relationship to hydrostatic
pressure regardless of macroscopic stress state and failure mode. Local plastic events are identified through a
threshold in the mean-squared nonaffine displacement and compared to the local stress state. We find that the
pmvM criterion only predicts local yield events when stress and displacements are averaged over at least 100
atoms. By contrast, macroscopic shear yield criteria appear to lose their ability to predict plastic activity on the
atomic scale.
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I. INTRODUCTION

Glassy polymers have many desirable mechanical proper-
ties �1�. They exhibit a large elastic limit of a few percent
strain, and their yield stresses range between 5% and 10% of
their elastic modulus �2�. The development of a fundamental
understanding of their mechanical behavior, however, still
poses great challenges to experiment, theory and simulations
�3�. The stress required to deform glassy polymers at con-
stant strain rate typically rises past the elastic response to a
maximum or yield stress, followed by strain softening �4�.
The yield stress is a complicated function of experimental
control parameters that include temperature, deformation
rate, sample history, and loading condition �2,4�. It generally
increases with increasing strain rate and decreasing tempera-
ture, and the amount of strain softening is sensitive to the
degree of annealing and physical aging �5,6�.

In engineering applications, it is of particular importance
to predict the stress state in a polymer glass at yield. Since
amorphous solids are isotropic, one expects that the loading
condition at yield will depend only on invariants of the stress
tensor �ij, namely, the first invariant or hydrostatic
pressure p=−��xx+�yy +�zz� /3 and the second invariant or
octahedral stress �oct= ���xx−�yy�2+ ��yy −�zz�2+ ��zz−�xx�2

+6��xy
2 +�yz

2 +�xz
2 ��1/2 /3. While the hydrostatic pressure re-

lates to volume changes, the octahedral stress couples to
shear deformations that leave the volume invariant. When
failure occurs through shear, experiments on many polymers
�7–10� as well as computer simulations �11,12� show that the
octahedral stress at yield is well described by the pressure-
modified von Mises �pmvM� yield criterion,

�oct
y = �0 + �p . �1�

In some formulations, �oct is replaced with the von Mises
equivalent stress �e�3�oct /�2. This condition is motivated

by the idea that the elastic energy associated with shear de-
formation reaches a critical value at the yield point. The
constant �0 denotes the yield stress at zero hydrostatic pres-
sure. It varies greatly between materials and also depends on
control parameters such as temperature and strain rate. The
pressure-dependence of the yield stress enters through a term
linear in pressure, which is reminiscent of static friction
where the force required to initiate sliding is proportional to
normal load. The friction coefficient � is close to 0.1 for
most amorphous polymers and metals. A similar friction term
appears in the closely related Mohr-Coloumb �MC� criterion,
�oct

y =�0−��n, where �n is the stress normal to a failure
plane. The linear dependence on �n has been verified directly
through molecular statics simulations of elementary shear
transformations �13�. MC type behavior can be observed in
geometries that promote localized failure, such as thin films
�14�, but bulk systems that remain isotropic up to the yield
point can be expected to follow the pmvM criterion. Equa-
tion �1� constrains the possible combinations of principal
stresses at yield to a yield surface, which has the form of a
tapered cylinder. When the loading condition becomes tri-
axial, the mode of failure changes to cavitation and the
pmvM criterion no longer applies.

Although amorphous solids are isotropic on macroscopic
scales, particle dynamics on the atomic scale is spatially and
temporally heterogeneous �15�. While small groups of atoms
are highly mobile, other regions do not change appreciably
over the same time scales. Local elastic constants vary rap-
idly on the nanoscale �16� and appear to be correlated with
irreversible deformation �17,18�. While the macroscopic
stress state of a polymer glass at yield obeys the pmvM cri-
terion quite well, the relationship between first and second
stress invariant may therefore be different on smaller scales.
Additionally, the pmvM criterion provides a robust predic-
tion for the macroscopic yield stress, but it is not clear if it is
capable of predicting localized plastic events on the atomis-
tic scale.

In this work, we explore the relationship between the
macroscopic pmvM criterion and the local stress state as well*jrottler@phas.ubc.ca
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as local plasticity in polymer glasses. We perform molecular
dynamics simulations under deformation at constant strain
rate for many different loading conditions, and compute not
only the resultant macroscopic stress, but also distributions
of local stresses in smaller volume elements containing dif-
ferent numbers of atoms down to a single atom. Our work
aims to answer two distinct, but related questions: �i� what is
the distribution of local stresses in a system that has been
strained to the macroscopic yield point, and how do they
relate to the pmvM criterion? �ii� Can the pmvM criterion be
used to predict localized plastic events? If so, on what scale?
We will show that there is a distinct crossover in behavior at
scales of about 100 atoms or less. While the pmvM criterion
is obeyed on average for coarse-grained volume elements
containing more than 100 atoms, all correlation to plastic
deformation is lost at smaller scales. Although we are simu-
lating a model polymer glass, we expect that the conclusions
will also be relevant for monovalent amorphous solids such
as mixtures of particles interacting via Lennard-Jones �LJ� or
other short-range forces �19�.

II. METHODS

We study amorphous plasticity through molecular dynam-
ics simulations of a standard coarse-grained bead-spring
model for linear polymers �20–22�. Beads are bonded via a
finite extensible nonlinear elastic �FENE� spring, and van der
Waals forces between the beads are modeled with a truncated
6–12 Lennard-Jones potential,

VLJ�r� = 4����

r
	12

− ��

r
	6
 for r � rc. �2�

The parameters of the LJ potential � and � define a reference
length and energy scale. These imply a reference time scale
�LJ=�m�2 /�, and we use rc=1.5�. All simulations here use
4000 chains of 10 beads each in a cubic box subject to peri-
odic boundary conditions, which is large enough to avoid
finite size effects in the macroscopic mechanical response
�23�.

Unentangled polymer melts are created through a random
walk procedure followed by a soft push-off phase to avoid
particle overlap. The system is equilibrated at a melt tem-
perature T=1.2� /kB before undergoing a rapid quench into
the glassy state at T=0.1� /kB. The initially cubic simulation
box has �oct= p=0 and is deformed at constant true strain
rates �̇i. A broad range of loading conditions ranging from
pure shear to isotropic tensile loading are realized by impos-
ing different strain rates in different Cartesian directions as
indicated in Table I. Unless otherwise stated, all strain rates
are on order 10−5 /�LJ.

It is convenient to quantify deformation in terms of an
effective strain

�eff =
1
�2

���xx − �yy�2 + ��yy − �zz�2 + ��zz − �xx�2�1/2. �3�

The macroscopic stress tensor is computed from the usual
virial expression,

�ij = −
1

2V��
n

mnvi
nv j

n + �
n

�
m�n

ri
nmFj

nm	 . �4�

Here, mn and vi
n denote the mass and velocity component of

particle n, while Fi
nm denotes the i-component of the force

acting between particles n and m separated by a distance ri
nm,

and V is the simulation box volume.
A similar expression can used to define an atomic stress

tensor for atom m �24�.

�ij
m = −

1

2vm
�mmvi

mv j
m + �

n�m

ri
nmFj

nm	 . �5�

Equation �5� has been applied multiple times to both polymer
glasses �25,26� and amorphous metals �27�. In order to con-
vert the virial into a stress, a local volume vm has to be
associated with each atom. Here, we shall use a Voronoi
tessellation to define atomic volumes �28�. The macroscopic
stress then follows from a weighted average:

�ij =
1

�
m

vm

�
m

vm�ij
m, �6�

where it is understood that �mvm=V.
In addition to the atomic stress, we wish to obtain coarse-

grained local stresses on different scales to examine the
crossover to macroscopic behavior. There are several possi-
bilities to compute the stress tensor in amorphous materials

TABLE I. Summary of loading conditions used in the present
study. Strain rates are given in units of 10−5�LJ

−1, while py and �oct
y are

given in units of � /�3.

No. �̇xx �̇yy �̇zz py �oct
y

1 1.5 2.0 0.0 −1.8707 0.1427

2 1.5 2.0 −0.3 −1.8478 0.1730

3 −0.5 1.5 1.0 −1.8510 0.2135

4 −0.5 1.5 0.8 −1.6377 0.2328

5 2.5 −0.5 −1.0 −0.7948 0.3486

6 −0.35 1.4 0.8 −1.6313 0.2079

7 2.0 2.0 2.0 −2.1839 0.0077

8 2.5 1.2 −1.7 −1.1229 0.3017

9 2.9 −1.0 −1.0 −0.5561 0.3605

10 1.0 1.0 −2.0 0.12 0.4051

11 1.1 −2.3 1.6 −0.2356 0.4109

12 1.0 1.0 −3.0 1.6635 0.5414

13 2.5 0.5 1.6 −2.0129 0.1179

14 −0.5 1.5 0.9 −1.6845 0.2261

15 2.2 1.55 −1.25 −1.4048 0.2713

16 2.5 −0.4 −0.9 −0.8769 0.3246

17 1.0 1.0 −2.4 0.7287 0.4841

18 −0.3 −1.0 2.5 −1.1084 0.3419

19 −0.8 3.2 −0.9 −0.9123 0.3316

20 1.2 2.4 −2.0 −0.9134 0.3274

21 1.0 1.0 −3.1 2.2325 0.5789
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on intermediate scales. Goldhirsch and Goldenberg suggest
to introduce a coarse-graining function, e.g., a Gaussian,
which smoothes the kinetic and virial contributions over the
desired length scale �29�. Another popular approach has been
to partition the simulation cell into subvolumes, and only
those atoms residing in that volume contribute to the local
stress tensor of the region �16�. To avoid artificial disconti-
nuities from atoms crossing boundaries, individual contribu-
tions in the virial stress are weighted with the fraction of the
bond ri

nm lying inside the averaging volume �30,31�. Here,
we pursue a similar approach and subdivide our simulation
cell into 8, 64, 512, and 4096 rectangular bins containing
approximately 5000, 625, 78, and 10 atoms, respectively.
The stress tensor within a bin is computed according to Eq.
�6�, where the sum runs only over those atoms that are in the
given bin at a particular time. This implies that the bin vol-
umes Vbin=�mvm, and number of atoms per bin are not all
equal but fluctuate slightly depending on the local particle
density and shape of the simulation cell. This scheme con-
verges to the macroscopic stress Eq. �4� when the simulation
box is taken as a single bin.

III. RESULTS

Typical simulated stress-strain curves resulting from de-
formation of our polymer glass model are show in Fig. 1�a�.

One can see that the octahedral shear stress peaks at yield
strains between 5% and 10%, and we define the maximum of
�oct as the yield stress �oct

y and denote the corresponding pres-
sure at yield with py. As the failure mode changes from shear
�upper curves� to cavitation �lower curves�, the octahedral
stress decreases but the stress drop following yield becomes
more pronounced.

Figure 1�b� plots �oct
y as a function of pressure py at yield

from these stress-strain curves as well as many more loading
conditions. Most data points fall along a straight line as pre-
dicted by Eq. �1�. At p�−1.7� /�3, the data points sharply
deviate from the von Mises line, signaling a change in failure
mode from shear yielding to cavitation. The pmvM criterion
only describes volume conserving shear and is expected to
fail when the dilational component of the deformation in-
creases. These results confirm those obtained in Ref. �11� for
a very similar polymer model. Here, we also show a data set
obtained at higher strain rates. Both shear and cavitational
yield stresses increase and the crossover to cavitation occurs
at slightly higher pressures, but again most data points obey
the pmvM criterion. Note that the cavitational yield stress is
less sensitive to strain rate than the shear yield stress, while
the value of the friction constant � is independent of rate.

The difference in behavior for shear yielding and cavita-
tion can be nicely observed as a change in the distributions
of Voronoi volume at the yield point, which are shown in
Fig. 2. Three of these curves correspond to pure shear fail-
ure, one curve to pure cavitation, and one curve was taken
right at the crossover between the failure modes. All distri-
butions are centered at 1�3 and have a Gaussian shoulder on
the small volume side, but exhibit an exponential tail for
large volumes. The slope of the exponential tail starts to
decrease right at the point where the mode of failure changes
from shear to cavitation, reflecting the dilational component
of the deformation and the formation of microvoids.

A. Local stress distributions at macroscopic yield

We now proceed to analyze the distributions P��oct� and
P�p� of octahedral shear stress and pressure at different lev-
els of coarse-graining when the system has been strained to
the macroscopic yield point. Inspecting first the atomic level
stresses, we see in Figs. 3�a� and 3�b� that while the pressure
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FIG. 1. �Color online� �a� Stress-strain curves of the polymer
glass for loading conditions #1 ���, #2 ���, #15 ���, and #5 ��� as
indicated in Table I. �b� Octahedral stress vs pressure at yield for all
loading conditions indicated in Table I as well as additional combi-
nations with strain rates of order 10−5 /�LJ ���. Also shown are yield
stresses from similar loading conditions with higher strain rates on
order 10−4 /�LJ ���. Straight lines show fits to Eq. �1� with constants
�0=0.41� /�3, �=0.086 �red, lower curve� and �0=0.54� /�3, �
=0.092 �blue, upper curve�.
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FIG. 2. �Color online� Distribution of Voronoi volumes at the
yield point for loading conditions #7 ��, pure cavitational failure�,
#4 ���, #8 ���, #9 ���, and #11 ��, pure shear failure� as indicated
in Table I.
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distributions are almost symmetrically centered around the
macroscopic pressure, the distributions of �oct are highly
skewed and exhibit large fluctuations with an exponential
tail. Such behavior is typical for amorphous solids �25�. As
failure shifts from shear to cavitation, both distributions nar-
row and the pressure distribution shift toward negative pres-
sure. Very similar behavior is found on the first level of
coarse-graining, where bins contain about 10 atoms, see
Figs. 3�c� and 3�d�. The magnitude of the stresses decreases,
but the �oct-distributions are still notably skewed. When the
bin size is increased again so that the stresses are averaged
over about 78 atoms, however, one can see in Fig. 3�e� that
the distributions become much more symmetric and the size
of the fluctuations is greatly reduced. Similarly, the pressure
distributions now take the form of near perfect Gaussians
whose mean shifts again toward negative tensile pressure for
cavitational failure.

In order to determine whether the macroscopic pmvM cri-
terion also determines the local stress state in a polymer glass
at yield, we compute the average octahedral shear stress from
the distributions in Fig. 3 and plot the result against the av-
erage pressure in Fig. 4 for all levels of coarse-graining and
for all loading conditions. Also shown is the macroscopic
yield stress data from Fig. 1�b�. Data for each scale fall along
a straight line and can therefore be fit to Eq. �1�. Data for
macroscopic yield and bins containing 5000 and 625 par-
ticles collapse on top of each other. Deviations from the bulk
pmvM behavior start to appear at the next smaller coarse-
graining scale that averages over 78 atoms. The friction co-
efficient � in the pmvM law is still almost unchanged, but
the offset �0 has increased, reflecting the increasing magni-
tude of the local shear stresses. On a scale of one and 10
atoms, both � and �0 have increased significantly and deviate
from the macroscopic values. We conclude that although the
average local octahedral shear stress obeys the functional
form of the pmvM criterion, there is a change in behavior
when the stresses are averaged over 78 atoms or less.

As an alternative analysis of the behavior of local stresses
at yield, we consider in Fig. 5 scatter plots of local values of

�oct in bins at 5 different levels of coarse-graining for many
loading conditions. In this representation, it is particularly
easy to observe the increasing amount of fluctuations as the
coarse-graining scale decreases. At all scales, however, there
is a clear positive correlation between shear stress and pres-
sure. Linear fits to the scatter data capture this trend rather
well, and the resulting coefficients are compared to those
obtained from the correlation between 
�oct� and pressure in
Table II. We find excellent overall agreement between the
two data sets. Analysis of the scatter plots shows again that
the friction coefficient ��0.09 from the macroscopic value
to 78 atoms/bin, but then starts to increase. Similarly, the
offset �0�0.4� /�3 on the three coarsest levels, but then in-
creases to �0�3.9� /�3.

Although the functional form of the pmvM criterion ap-
pears to hold on average at all scales of coarse-graining, the
increase in fluctuations casts doubt on its physical signifi-
cance. The pmvM condition constrains the possible principal
stress combinations, and it is instructive to ask whether this
condition holds only at yield or more generally. To this end,
we show in Fig. 6 parametric plots of 
�oct� vs pressure for a
range of deformations at different strains between zero and
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FIG. 3. �Color online� Distributions of pressure P�p� and octahedral stress P��oct� at yield at the atomic level �a,b� as well as in bins
containing approximately 10 �c,d� and 78 atoms �e,f�, respectively. Symbols correspond to loading states as indicated in Fig. 2.
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FIG. 4. �Color online� Average octahedral stress 
�oct� at the
macroscopic yield point for the atomic stress ��� and averaged
within bins containing 10 ���, 78 ���, 625 ���, and 5000 ���
atoms and the macroscopic yield stress ���. Solid lines are fits to
Eq. �1� and the coefficients �0

av and �av are reported in Table II.
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the yield strain. One can see in Fig. 6�a� that in bins contain-
ing 5000 atoms, the pmvM condition is only fulfilled when
the system reaches the yield point, and the pmvM line ap-
pears as an envelope to the individual loading curves. At the
next two smaller levels of coarse-graining, 625 and 78
atoms/bin, this behavior persists but becomes gradually re-
duced. Remarkably, for 10 atoms/bin and the atomic stress,
we find that all data points fall onto a straight line regardless
of loading state. Note in particular that this includes the data
points belonging to cavitational failure, which strongly devi-
ate from the pmvM line for macroscopic stress. It appears
that in amorphous packings such as our polymer glass,
atomic stresses obey a pmvM like constraint, 
�oct�=�0

av

+�avp, at all times and not only at macroscopic yield. During
deformation, different combinations of p and 
�oct� are real-
ized along the von Mises line, but these do not carry any
specific information about the macroscopic yield state or the
mode of failure.

B. pmvM criterion and local plastic events

The data from Fig. 6 show clearly that average atomic
stresses satisfy the functional form of the pmvM criterion
trivially at all times. It is not clear yet, however, whether
there exists a correlation between the local stress state and
the occurrence of local plastic rearrangements. Previous
work has shown that irreversible deformation in polymer
glasses occurs long before the macroscopic shear stress
reaches a maximum �11,26�. A frequently used measure of
local plastic activity in amorphous packings is the nonaffine
displacement of particle i �32–35�,

�ri�
na = ri� − ri�

0 − ��	ri	
0 , �7�

where ri
0 denotes the particle position at a reference time and

��	 is the macroscopic strain tensor. In the following discus-
sion, the reference state is always the unstrained solid at the
beginning of the deformation.

To illustrate the evolution of this quantity during defor-
mation, we show in Fig. 7 the mean-squared nonaffine dis-
placement 
��rna�2� for several deformations that include
shear and cavitation. One can see that for shear yielding,

��rna�2� rises continuously without any characteristic fea-
ture indicating global yield. The onset of cavitation, how-
ever, is extremely well signaled through a divergence at
about 5% strain.

In order to use 
��rna�2� as a diagnostic for plasticity, it is,
therefore, necessary to associate yield with an �arbitrary�
threshold. A suitable range for possible values of this thresh-
old can be obtained from Fig. 8�a�, which shows the value of

��rna�2� at the macroscopic yield point for a range of load-
ing conditions. We find that 
��rna�2� ranges between 0.05
and 0.15 �2, with the smallest values occurring for cavita-
tional failure. In the following, we shall therefore use 0.1 �2

as a typical value of 
��rna�2� at yield �36�. Figure 8�b�
shows that this threshold, when applied to the mean-squared
nonaffine displacement, would predict yield strains that only
slightly overestimate those obtained from the maximum
shear stress definition of yielding.

Having defined a yield threshold, we now analyze the
dynamics of yielding at different levels of coarse-graining.
First, we examine the number of yield events per unit time

TABLE II. Coefficients �av and �0
av from fits of the data in Fig.

4 to Eq. �1� and coefficients � and �0 from the corresponding fits to
the scatter plots in Fig. 5.

Atoms/bin �av �0
av � �0

40000 0.093 0.41 0.093 0.41

5000 0.090 0.41 0.09 0.41

625 0.089 0.46 0.088 0.46

78 0.088 0.71 0.080 0.70

10 0.14 1.57 0.096 1.54

1 0.355 3.98 0.176 3.87
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FIG. 5. �Color online� Scatter plots of octahedral stresses at yield vs pressure. The bins contained approximately �a� 5000, �b� 625, �c�
78, and �d� 10 atoms, and �e� shows the atomic stress. Solid lines are fits to Eq. �1� and the coefficients �0 and � are reported in Table II.
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for two typical deformations representative of shear and
cavitational failure in Figs. 9�a� and 9�b�. Yield is defined to
occur in a bin when 
��rna�2�bin=0.1�2. Here, the average is
taken over particles in a particular bin, and we only consider
the first yield event for every bin. At all levels of resolution,
the yield rate reaches a maximum at the same time, which
coincides with the time it takes to strain to yield. The distri-
butions broaden as the bins become smaller, which indicates
that many single atoms reach the above defined yield thresh-
old a long time before the system reaches macroscopic yield.
Clearly, an accumulation of many local plastic events forms
the total response of the system. This effect can be seen even
more clearly in Figs. 9�c� and 9�d�, which plots the cumula-
tive distributions or fraction of bins that have undergone
yield at a given time. While this fraction jumps discontinu-
ously from zero to one for the total system, the saturation
becomes much smoother with decreasing bin size and takes
longer for shear yielding than for cavitation.

A direct test whether the pmvM criterion is capable of
predicting local plastic events consists in examining the
stress state of volume elements that have just experienced

yield. If the pmvM criterion holds, one expects a linear rela-
tionship between octahedral shear stress and pressure. Ac-
cording to Fig. 10�a�, this is indeed the case on the macro-
scopic level: values of �oct at times where 
��rna�2�=0.1
collapse on a straight line when plotted against pressure, and
deviate at negative pressure when cavitation sets in. The val-
ues also agree perfectly with the maximum shear stress �oct

y ,
even though the nonaffine threshold criterion predicts yield
at slightly different times. This effect can be understood from
Fig. 6�a�, where one can see that the combinations of �oct and
p satisfying the pmvM criterion occur not only strictly at
yield but within a finite time interval following yield. The
ability of the pmvM to predict plasticity continues to hold for
bins containing 5000 and 625 atoms, see Fig. 10�b� and
10�c�. Although the scatter of the data increases, the octahe-
dral shear stresses at yield agree well with those stresses
determined from the maximum shear stress definition �see
also Figs. 1 and 5�. For bins containing 78 atoms, we can still
identify a linear trend, but the scatter has increased signifi-
cantly. Data for the two smallest levels of coarse-graining are
also shown in Figs. 10�e� and 10�f�, but since the average
atomic stresses already satisfy the pmvM equation at all
times, we expect to recover this trend in the scatter plot.

The above results suggest that the stress state in yielding
bins follows a pmvM law for 625 atoms/bin and above, but
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starts to cross over into new behavior for smaller volume
elements. The significance of the correlations found in Fig.
10 can be tested by plotting combinations of �oct and p at
random times during the straining interval. From Figs.
11�a�–11�c�, it is evident that the good correlation between
shear stress at yield and the pmvM condition is lost. For the
two smallest bin sizes �Figs. 11�e� and 11�f��, there is no
discernible difference between stresses plotted at random and
at yield, and the bin size containing 78 atoms appears to be
showing crossover behavior between the two limits ��Fig.
11�d��. A more quantitative view can be taken by comparing
the best fits of Eq. �1� to the two data sets in Table III. Here,
we see that there are systematic discrepancies between the
stresses at yield times vs random times for the largest bin
sizes, but we obtain statistically identical results for 10

atoms/bin as well as the atomic stresses. To further confirm
that the crossover scale to obtain pmvM like behavior is on
the order 100 atoms, we associate a coarse-grained stress
directly with each atom by averaging over contributions
from all neighboring atoms located in rectangular bins cen-
tered on each atom. For bin sizes containing approx. 78 at-
oms, the resulting �oct and p-correlations now agree very
well with those obtained from fixed bins of the same size.

IV. SUMMARY AND DISCUSSION

The identification of a local order parameter that predicts
time and place of elementary shear transformations in amor-
phous solids is a prerequisite for the first-principles develop-
ment of plasticity models. In this study, we examined the
connection between macroscopic yield, local stress states
and local plastic activity on several different length scales. In
accord with previous simulations and the experimentally ob-
served yield behavior of many polymers, the pmvM criterion
accurately describes the principal stress combinations at the
macroscopic yield point �maximum octahedral shear stress�.
We then partitioned the simulation cell into smaller volume
elements and computed the distribution of local octahedral
shear stresses and pressures down to the atomic level. Al-
though fluctuations increase with decreasing coarse-graining
scale, we found that the macroscopic pmvM expression con-
tinues to hold with the same parameters for the average
stresses in bins containing about 100 atoms or more only at
the macroscopic yield point. For bins containing only one or
10 atoms, however, we found qualitatively different behav-
ior: octahedral atomic stress and pressure are always linearly
related regardless of macroscopic loading state. It appears
that this is a general feature of amorphous packings �25�.

The crossover between atomistic and bulk behavior at
about 100 atoms corresponds to a length scale of 4 and 5
particle diameters, which reaches beyond the second peak of
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the static structure factor. It is interesting to note that in a
recent study of local elastic properties in an athermal two-
dimensional �2D� polydisperse Lennard-Jones mixture, a
very similar coarse-graining scale of about 5 � was identified
below which Hooke’s law is no longer valid �18�. Above this
scale, elastic properties are heterogeneous and average out to
homogeneous behavior on scales of approximately 20 �.
Since the von Mises yield criterion is motivated by the idea
that the elastic energy associated with shear deformation
reaches a critical value at yield, it is perhaps not surprising
that its loss of validity coincides with that of linear elasticity.
The similar crossover length scales may be due to the fact
that the low strain behavior of the two models is similar �37�.
The precise value of crossover length is likely not universal
and may be different in fully atomistic polymer models that
include angle and dihedral terms.

We also investigated the local significance of the pmvM
condition by computing stress states at times when the local
mean-squared nonaffine displacement reaches a threshold
value. The nonaffine displacement had been shown previ-
ously to be a very sensitive indicator of plastic activity. The
combinations of �oct and p in the yielding bins do agree well

with the pmvM condition on the coarsest scales up to 78
atoms. Since a pmvM like expression was found to hold on
smaller scales regardless of deformation state, we conclude
that the pmvM condition has no predictive power over plas-
tic events on scales smaller than 100 atoms. Further support
for this interpretation comes from a study of atomic stress
distributions in a 2D Lennard-Jones amorphous solid under
shear by Tsamados et al. �38�. In this work, individual plastic
rearrangements of quadrupolar symmetry are identified in the
nonaffine displacement, but no connection was found be-
tween the location of these events and the local atomic stress.
The authors also conclude that global yield criteria do not
provide a locally selective criterion for plasticity.

The present findings have implications for the interpreta-
tion of the role of stress in deformed glassy solids. Viscosity
and hence relaxation times are often assumed to decrease
with applied stress � by a factor � /sinh��V /kBT� �39�, but
experiments have revealed that the accelerated dynamics un-
der load does not scale with true stress in this form and
depends on other parameters as well �40�. Modified versions
of such transition rates for elementary shear events are used
in the Shear-Transformation-Zone �STZ� theory of plastic
deformation �41,42�. Other approaches such as the Soft
Glassy Rheology �SGR� model emphasize instead the role of
local strain in the activated hopping dynamics of mesocopic
elements �43�. The results here suggest that local stresses,
unless coarse-grained over several particle diameters, bear
little correlation with the occurrence of local plastic events.
Further simulation work may help to clarify whether local
stress or local strain is the better variable to describe struc-
tural relaxation and yield rates in amorphous solids.
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TABLE III. Coefficients from fits to Eq. �1�. �na and �0
na were

obtained from the data in Fig. 10 and �rand and �0
rand correspond to

the data in Fig. 11.

Atoms/bin �na �0
na �rand �0

rand

40000 0.085 0.41 0.10 0.33

5000 0.090 0.42 0.056 0.30

625 0.088 0.46 0.06 0.38

78 0.082 0.70 0.06 0.65

10 0.10 1.54 0.087 1.53

1 0.186 3.86 0.17 3.86
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